Closing Fri: $\quad 3.4$ (part 1),3.4(part 2)
Closing Mon: $\quad 10.2$
Closing Wed: $\quad 3.5($ part 1)
Closing Next Fri: 3.5(part 2)

Some motivation/review:

Given $y=f(x)$, we have learned

1. $\frac{d y}{d x}=f^{\prime}(x)=$ slope of tangent.
2.Equation for tangent:

$$
y=f^{\prime}(a)(x-a)+f(a)
$$

3. If $\mathrm{y}=$ distance and $\mathrm{x}=$ time, then is $f^{\prime}(x)=$ velocity.

Original	Derivative
Horiz. Tangent	Zero $\left(f^{\prime}(x)=0\right)$
Increasing	Positive
Decreasing	Negative
Vertical Tangent	Undefined

10.2 Parametric Calculus

Parametric equations describe motion in 2D (or 3D) by giving equations for x and y separately in terms of time:

$$
x=x(t), y=y(t)
$$

1. $\frac{d x}{d t}=x^{\prime}(t)=$ horizontal velocity
2. $\frac{d y}{d t}=y^{\prime}(t)=$ vertical velocity
3. $\mathrm{x}=$ distance, $\mathrm{y}=$ distance, $\mathrm{t}=$ time 4. $\frac{d y}{d x}=$??? (we will see this today)

Original	Derivatives
Horiz. Tangent	$y^{\prime}(t)=0$
Moving Upward	$\mathrm{y}^{\prime}(\mathrm{t})$ positive
Moving Down	$\mathrm{y}^{\prime}(\mathrm{t})$ negative
Vert. Tangent	$\mathrm{x}^{\prime}(\mathrm{t})=0$
Moving Right	$\mathrm{x}^{\prime}(\mathrm{t})$ positive
Moving Left	$\mathrm{x}^{\prime}(\mathrm{t})$ negative

Special parametric equations:

1. An object moving around a circle at a constant speed:

$$
\begin{aligned}
& \left(x_{c}, y_{c}\right)=\text { center of circle } \\
& r=\text { radius, } \theta_{0}=\text { initial angle } \\
& \omega=\text { angular speed, } \frac{\text { rad }}{\text { time }} \\
& \boldsymbol{x}=\boldsymbol{x}_{\boldsymbol{c}}+\boldsymbol{r} \cos \left(\boldsymbol{\theta}_{\mathbf{0}}+\boldsymbol{\omega} \boldsymbol{t}\right) \\
& \boldsymbol{y}=\boldsymbol{y}_{\boldsymbol{c}}+\boldsymbol{r} \sin \left(\boldsymbol{\theta}_{\mathbf{0}}+\boldsymbol{\omega} \boldsymbol{t}\right)
\end{aligned}
$$

Note also the fundamental facts about circular motion (which are only true in radians):

$$
\begin{aligned}
& \text { linear speed }=v=\omega r \\
& \text { arc length }=s=r \theta
\end{aligned}
$$

2. An object moving on a straight line at a constant speed:

$$
\begin{gathered}
\left(x_{0}, y_{0}\right)=\text { initial location } \\
a=\text { horizontal velocity } \\
b=\text { vertical velocity } \\
\boldsymbol{x}=\boldsymbol{x}_{0}+\boldsymbol{a t} \\
\boldsymbol{y}=\boldsymbol{y}_{0}+\boldsymbol{b} \boldsymbol{t}
\end{gathered}
$$

Given an applied problem that involves either of these situations, you should initially plug all your information in and solve for the constants.

Directly from homework:

A 4-centimeter rod is attached at one end A to a point on a wheel of radius 2 cm . The other end B is free to move back and forth along a horizontal bar that goes through the center of the wheel. At time $t=0$ the rod is situated as in the diagram at the left below. The wheel rotates counterclockwise at $3.5 \mathrm{rev} / \mathrm{sec}$. Thus, when $t=1 / 21 \mathrm{sec}$, the rod is situated as in the diagram at the right below.

